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1 Radicals and Primary Ideals

1.1 Radicals

We will be assuming that R be a commutative ring.

Definition 1.1. The radical of an ideal I of R is
√
I = {a ∈ R : ak ∈ I for some k ≥ 1}.

Lemma 1.1.
√
I is an ideal.

Proof. If r ∈ R and a ∈
√
I, let k be such that ak ∈ I. Then (ra)k = rkak ∈ I, so ra ∈

√
I.

If a, b,∈
√
I, then ak, b` ∈ I. Then (a + b)k+` =

∑k+`
i=0

(
k+`
i

)
aibk+`−i. Either i ≥ k or

k + `− i ≥ `, so (a+ b)k+` ∈ I. So a+ b ∈
√
I.

Definition 1.2. The nilradical
√

0 = {a ∈ R : a is nilpotent} is the radical of 0.

Example 1.1. Let R = F [x]/(xn), where F is a field. Then
√

0 = (x).

Lemma 1.2. If π : R→ R/I is a projection, then π(
√
I) is the nilradical of R/I.

Proposition 1.1. Let I be a proper ideal of R. Then

√
I =

⋂
p prime
I⊆p

p.

Proof. One direction uses Zorn’s lemma.

Definition 1.3. A ideal is radical if I =
√
I.1

Example 1.2. Prime ideals are radical. If an = aan−1 ∈ p, then a ∈ p or an−1 ∈ p. By
recursion, a ∈ p.

1An ideal is also called radical if it’s just really really cool.
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Example 1.3. Let F be a field, let f1, . . . , fr be irreducible in F [x], and let k1, . . . , kr ≥ 1.

Then
√

(fk11 , . . . , fkrr ) = (f1, . . . , fr).

Example 1.4. If I is an ideal,
√
I is radical. That is,

√√
I =
√
I.

Proposition 1.2. Let R be noetherian and I ⊆ R an ideal. There exists N ≥ 1 such that
(
√
I)N ⊆ I.

Proof. In a Noetherian ring, all ideals are finitely generated:
√
I = (a1, . . . , am). There

exist ki ≥ 1 such that akii ∈ I. Let k = max(ki). Then aki ∈ I for all i. For arbitrary
elements, let x =

∑m
i=1 riai ∈

√
I, where ri ∈ R. Then xmk ∈ ({ai11 , . . . , aimm : ij ≥

0, i1 + · · ·+ im = km}) ⊆ (ak1, . . . , a
k
m) ⊆ I.

Example 1.5. This property does not need to hold in non-noetherian rings. Let R =
F [x1, x2, x3, . . . ]/(x1, x

2
2, x

3
3, . . . ). Then

√
0 = (x1, x2, x3, . . . ). But (

√
0)n 6= (0) for all

n ≥ 1.

Definition 1.4. I ⊆ R is nilpotent if there exists n ≥ 1 such that In = (0).

Corollary 1.1. In a noetherian ring, the nilradical is nilpotent.

1.2 Primary ideals

Primary ideals are a generalization of prime ideals.

Definition 1.5. A proper ideal q of R is primary if for any a, b ∈ R such that ab ∈ q,
either a ∈ q or bn ∈ q for some n ≥ 1.

Remark 1.1. Since R is commutative, this condition is symmetric, even if it does not look
so at first.

Lemma 1.3. A proper ideal q of R is primary if and only if every zero divisor in R/q is
nilpotent.

Proposition 1.3. The radical of any primary ideal is a prime ideal.

Proof. Let q be primary. Suppose ab ∈ √q. Then there exists k ≥ 1 such that akbk ∈ q.
Then either ak ∈ q or bnk ∈ q for some n ≥ 1. That is, either a ∈ √q or b ∈ √q.

Definition 1.6. If p =
√
q, where q is primary, we say q is p-primary. We say p is the

associated prime of q.

Example 1.6. Let F be a field. Then (x2, y) ⊆ F [x, y] is primary: F [x, y]/(x2, y) ∼=
F [x]/(x2), so by the lemma, (x2, y) is primary with

√
(x2, y) = (x, y).
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Example 1.7. Let R = F [x, y, z]/(xy − x2), and let p = (x, z). Then R/p ∼= F [y], so p is
prime. We have

√
p2 = p, and xy ∈ p2, but x /∈ p2 and y /∈

√
p2 = p. So p2 is not primary.

Lemma 1.4. If I is an ideal of R such that
√
I is maximal, then I is primary. In particular,

any power of a maximal ideal m is m-primary.

Proof. Let m =
√
I be maximal. The image of m in R/I is the nilradical of R/I. The

nilradical of R/I is the intersection of all prime ideals of R/I, so the nilradical is the only
prime ideal in R/I. So R/I is local, and every non nilpotent element is a unit. Every zero
divisor is therefore nilpotent. By the earlier lemma, I is primary.

Lemma 1.5. A finite intersection of p-primary ideals is p-primary.

Definition 1.7. Let I be an ideal of R. A primary decomposition of I is a finite
collection {q1, . . . , qn} of primary ideals such that I =

⋂n
i=1 qi. A primary decomposition

{q1, . . . , qn} of I is minimal if for all i, qi 6⊇
⋂n

j=1
j 6=i

and
√
qi 6=

√
qj for all i 6= j.

Proposition 1.4. There always exists a minimal primary decomposition if there exists a
primary decomposition

Proof. Use the lemma.

Theorem 1.1. If R is noetherian, every proper ideal of R has a primary decomposition.

We will prove this next time.
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